Math Gold Medalist

Lor

2023 USAMO

Problem 6

Let ABC be a triangle with incenter $I$ and excenters $I_a$$I_b$$I_c$ opposite $A$$B$, and $C$, respectively. Given an arbitrary point $D$ on the circumcircle of $\triangle ABC$ that does not lie on any of the lines $IIa$$I_bI_c$, or $BC$, suppose the circumcircles of $\triangle DIIa$ and $\triangle DI_bI_c$ intersect at two distinct points $D$ and $F$. If $E$ is the intersection of lines $DF$ and $BC$, prove that $\angle BAD = \angle EAC$.

Important Ideas in Geometry(From 50 Important Formulas in Geometry)

Cyclic Quadrilaterals

Angle Bisectors

Angle Chasing

Similar Triangles

Power of a Point

Radical Axis

Linearity of Power of a Point

AI.AIa=bc=AIb.AIc

BICIa is cyclic

Suppose extension of AD intersects circumcircle of DIbIc at X

If you draw perpendicular from X to AIb and extend it then it intersects BC at E’

AX=AE’

Suppose extension of AD intersects circumcircle of DIIa at Y

If you draw perpendicular from Y to AIa and extend it then it intersects BC at E’

YN=NE’

2021 BMO Round 2 Problem 3(British Mathematical Olympiad)

2013 IMO Problem 3

   Solution