Math Gold Medalist

Lor

2023 USAJMO

Problem 6

Isosceles triangle $ABC$, with $AB=AC$, is inscribed in circle $\omega$. Let $D$ be an arbitrary point inside $BC$ such that $BD\neq DC$. Ray $AD$ intersects $\omega$ again at $E$ (other than $A$). Point $F$ (other than $E$) is chosen on $\omega$ such that $\angle DFE = 90^\circ$. Line $FE$ intersects rays $AB$ and $AC$ at points $X$ and $Y$, respectively. Prove that $\angle XDE = \angle EDY$.

Loci of Equi-angular Points

Cyclic Quadrilateral

Power of a Point with Respect to a Circle

Ratio Lemma

Congruent Triangles

Similar Triangles

w1: Circumcircle of EFD

K: intersection of XD and w1

L: intersection of YD and w1

XK.XD=XE.XF=XB.XA

ABKD is cyclic

ACLD is cyclic

<ALD = <ABC = <ACB = <AKD

Prove that triangles AKE and ALE are congruent

2018 IMO Problem 1

   Solution