Math Gold Medalist

Lor

2023 AMC 8 

Problem 25

Fifteen integers $a_1, a_2, a_3, \dots, a_{15}$ are arranged in order on a number line. The integers are equally spaced and have the property that\[1 \le a_1 \le 10, \thickspace 13 \le a_2 \le 20, \thickspace \text{ and } \thickspace 241 \le a_{15}\le 250.\]What is the sum of digits of $a_{14}?$

$\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 11 \qquad \textbf{(E)}\ 12$

Casework

Arithmetic Sequence

We call   a1 = a   and   a2 – a1 = d

So a15 = a+14d

241 <= a+14d <= 250 

Consider

a=1

a=2

a=3

Then you will see a=3 works ( after checking some cases you can prove other cases don’t work)

   Solution