Math Gold Medalist

Lor

2023 AMC 8 

Problem 23

Each square in a $3 \times 3$ grid is randomly filled with one of the $4$ gray and white tiles shown below on the right.[asy] size(5.663333333cm); draw((0,0)--(3,0)--(3,3)--(0,3)--cycle,gray); draw((1,0)--(1,3)--(2,3)--(2,0),gray); draw((0,1)--(3,1)--(3,2)--(0,2),gray); fill((6,.33)--(7,.33)--(7,1.33)--cycle,mediumgray); draw((6,.33)--(7,.33)--(7,1.33)--(6,1.33)--cycle,gray); fill((6,1.67)--(7,2.67)--(6,2.67)--cycle,mediumgray); draw((6,1.67)--(7,1.67)--(7,2.67)--(6,2.67)--cycle,gray); fill((7.33,.33)--(8.33,.33)--(7.33,1.33)--cycle,mediumgray); draw((7.33,.33)--(8.33,.33)--(8.33,1.33)--(7.33,1.33)--cycle,gray); fill((8.33,1.67)--(8.33,2.67)--(7.33,2.67)--cycle,mediumgray); draw((7.33,1.67)--(8.33,1.67)--(8.33,2.67)--(7.33,2.67)--cycle,gray); [/asy]What is the probability that the tiling will contain a large gray diamond in one of the smaller $2 \times 2$ grids? Below is an example of such tiling.[asy] size(2cm); fill((1,0)--(0,1)--(0,2)--(1,1)--cycle,mediumgray); fill((2,0)--(3,1)--(2,2)--(1,1)--cycle,mediumgray); fill((1,2)--(1,3)--(0,3)--cycle,mediumgray); fill((1,2)--(2,2)--(2,3)--cycle,mediumgray); fill((3,2)--(3,3)--(2,3)--cycle,mediumgray); draw((0,0)--(3,0)--(3,3)--(0,3)--cycle,gray); draw((1,0)--(1,3)--(2,3)--(2,0),gray); draw((0,1)--(3,1)--(3,2)--(0,2),gray); [/asy]

$\textbf{(A) } \frac{1}{1024} \qquad \textbf{(B) } \frac{1}{256} \qquad \textbf{(C) } \frac{1}{64} \qquad \textbf{(D) } \frac{1}{16} \qquad \textbf{(E) } \frac{1}{4}$

Probability = (Favorable Cases) / (Possible Cases)

Product Rule for Counting

Possible Cases = 4^9

There are 4 cases for placing the large gray diamond ( There is no intersection between these four cases)

5 squares are left and they have 4^5 cases.

   Solution