Math Gold Medalist

Lor

2023 AMC 10A

Problem 6

An integer is assigned to each vertex of a cube. The value of an edge is defined to be the sum of the values of the two vertices it touches, and the value of a face is defined to be the sum of the values of the four edges surrounding it. The value of the cube is defined as the sum of the values of its six faces. Suppose the sum of the integers assigned to the vertices is $21$. What is the value of the cube?

$\textbf{(A) } 42 \qquad \textbf{(B) } 63 \qquad \textbf{(C) } 84 \qquad \textbf{(D) } 126 \qquad \textbf{(E) } 252$


Double Counting

If the value of a vertex = x

x is counted 3 times in all edges.

x is counted 6 times in all faces.

   Solution