Math Gold Medalist

Lor

2023 AMC 10A 

Problem 25

If $A$ and $B$ are vertices of a polyhedron, define the distance $d(A, B)$ to be the minimum number of edges of the polyhedron one must traverse in order to connect $A$ and $B$. For example, $\overline{AB}$ is an edge of the polyhedron, then $d(A, B) = 1$, but if $\overline{AC}$ and $\overline{CB}$ are edges and $\overline{AB}$ is not an edge, then $d(A, B) = 2$. Let $Q$$R$, and $S$ be randomly chosen distinct vertices of a regular icosahedron (regular polyhedron made up of 20 equilateral triangles). What is the probability that $d(Q, R) > d(R, S)$” width=”144″ height=”20″ style=”border-width: 0px; border-style: initial; vertical-align: -5px;”>?</p><p style=$\textbf{(A) }\frac{7}{22}\qquad\textbf{(B) }\frac{1}{3}\qquad\textbf{(C) }\frac{3}{8}\qquad\textbf{(D) }\frac{5}{12}\qquad\textbf{(E) }\frac{1}{2}$

Polyhedron

Rooted Graph

W.L.O.G. suppose top vertex is R

Find the number of cases that d(Q,R)=d(R,S)

   Solution