Math Gold Medalist

Lor

2023 AIME I 

Problem 2

Positive real numbers $b \not= 1$ and $n$ satisfy the equations\[\sqrt{\log_b n} = \log_b \sqrt{n} \qquad \text{and} \qquad b \cdot \log_b n = \log_b (bn).\]The value of $n$ is $\frac{j}{k},$ where $j$ and $k$ are relatively prime positive integers. Find $j+k.$

Logarithm Rules

Consider first equation and prove that n = b^4

Then replace n with b^4 in second equation

   Solution