Math Gold Medalist

2020 USAMO Problems

 

Day 1

Problem 1

Let $ABC$ be a fixed acute triangle inscribed in a circle $\omega$ with center $O$. A variable point $X$ is chosen on minor arc $AB$ of $\omega$, and segments $CX$ and $AB$ meet at $D$. Denote by $O_1$ and $O_2$ the circumcenters of triangles $ADX$ and $BDX$, respectively. Determine all points $X$ for which the area of triangle $OO_1O_2$ is minimized.



Problem 2

An empty $2020 \times 2020 \times 2020$ cube is given, and a $2020 \times 2020$ grid of square unit cells is drawn on each of its six faces. A beam is a $1 \times 1 \times 2020$ rectangular prism. Several beams are placed inside the cube subject to the following conditions:

  • The two $1 \times 1$ faces of each beam coincide with unit cells lying on opposite faces of the cube. (Hence, there are $3 \cdot 2020^2$ possible positions for a beam.)
  • No two beams have intersecting interiors.
  • The interiors of each of the four $1 \times 2020$ faces of each beam touch either a face of the cube or the interior of the face of another beam.

What is the smallest positive number of beams that can be placed to satisfy these conditions?


Problem 3

Let $p$ be an odd prime. An integer $x$ is called a quadratic non-residue if $p$ does not divide $x - t^2$ for any integer $t$.

Denote by $A$ the set of all integers $a$ such that $1 \le a < p$, and both $a$ and $4 - a$ are quadratic non-residues. Calculate the remainder when the product of the elements of $A$ is divided by $p$.



Day 2

Problem 4

Suppose that $(a_1, b_1), (a_2, b_2), \ldots , (a_{100}, b_{100})$ are distinct ordered pairs of nonnegative integers. Let $N$ denote the number of pairs of integers $(i, j)$ satisfying $1 \le i < j \le 100$ and $|a_ib_j - a_j b_i|=1$. Determine the largest possible value of $N$ over all possible choices of the $100$ ordered pairs.



Problem 5

A finite set $S$ of points in the coordinate plane is called overdetermined if $|S| \ge 2$ and there exists a nonzero polynomial $P(t)$, with real coefficients and of degree at most $|S| - 2$, satisfying $P(x) = y$ for every point $(x, y) \in S$.

For each integer $n \ge 2$, find the largest integer $k$ (in terms of $n$) such that there exists a set of $n$ distinct points that is not overdetermined, but has $k$ overdetermined subsets.


Problem 6

Let $n \ge 2$ be an integer. Let $x_1 \ge x_2 \ge \cdots \ge x_n$ and $y_1 \ge y_2 \ge \cdots \ge y_n$ be $2n$ real numbers such that\begin{align*} 0 &= x_1 + x_2 + \cdots + x_n = y_1 + y_2 + \cdots + y_n\\ \text{and  }1 &= x_1^2+x_2^2+\cdots+x_n^2=y_1^2+y_2^2+\cdots+y_n^2. \end{align*}Prove that\[\sum_{i=1}^n(x_iy_i-x_iy_{n+1-i})\ge\frac{2}{\sqrt{n-1}}.\]